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Delivery is one of the most important research topics in the 
21st century. Delivery is defined as the ability to bring an 
agent from outside the body (or biological system) to a spe-

cific targeted site in the body (or biological system). There have been 
significant advances in the development of new imaging agents, 
therapeutics and biological tools such as genome editors and nano-
machines. These emerging technologies are exciting as they offer the 
ability to treat diseases with cellular and molecular precision. They 
are typically incorporated into nanoparticles, bacteria, viruses and 
other vehicles that protect them from degradation and enable them 
to be delivered to the biological target. However, the majority of the 
nanoparticles generally accumulate in off-target tissues. Delivery can 
vary depending on the size, shape, surface chemistry, stiffness and 
chemical composition of the delivery vehicles, but the optimal design 
to reach a specific biological target is unclear. The current design 
paradigm is mainly from a physical (that is, chemical and mate-
rial properties) rather than a biological perspective. Administered 
nanoparticles interact with different tissues and organs that filter 
them out and prevent their delivery to the target site. The biologi-
cal systems that a nanoparticle interacts with along its journey from 
the site of administration to the target disease site form barriers that 
control the delivery process. Accumulation in off-target locations 
causes harmful side effects and reduces the quantity of the drug at 
the disease site and thus the efficacy of the formulation. Here, we 
explore the role of biology and its barriers in guiding nanoparticle 
design for delivering medical agents to the target site.

The nanoparticle journey
Nanoparticle delivery systems interact with different molecules, 
cells, tissues and organs as they are transported through the body 
(Fig. 1). The relationship between engineered nanomaterials and a 
biological system is referred to as nanoparticle–biological (nano–
bio) interactions. These interactions dictate what happens to the 
nanomaterial inside the body. When nanoparticles are adminis-
tered, proteins instantly adsorb to the nanoparticle’s surface and 
form a protein corona. The protein corona profile, composition and 
assembly depend on the biological molecules and fluids (such as 
blood, cerebrospinal fluid and saliva) the nanoparticle first interacts  
with and the nanoparticle’s physical and chemical properties such 

as size, shape and surface charge1,2. This corona forms a new inter-
face between the nanoparticles and cells or tissues, and influences 
nanoparticle uptake, biodistribution and immune response2–5. The 
protein corona may alter the nanoparticle’s in vivo trajectory. This 
protein corona can also mask the targeting effect of engineered 
ligands on the nanoparticle surface6,7. Salvati et al. found that 
cell-specific targeting with transferrin conjugated nanoparticles 
decreased when the nanoparticles were coated in serum proteins 
compared to uncoated nanoparticles7.

The majority of nanoparticles circulating in the blood are typically 
removed by the liver and spleen of the reticuloendothelial system 
(RES). The function of these organs is to filter blood and remove bio-
logical debris and foreign particulates from circulation. These organs 
form a significant barrier to intravenously administered nanopar-
ticles including quantum dots8, micelles9, gold nanoparticles10 and 
liposomes11,12. The liver can sequester the majority of intravenously 
administered nanoparticles and retain non-degradable nanoparticles 
for months after administration13. The primary source of nanopar-
ticle sequestration are Kupffer cells. These phagocytic immune cells 
line the inside of liver sinusoids and capture nanoparticles as they 
pass by in circulation14. Tsoi et al. demonstrated that sinusoids slow 
blood velocity when compared to arteries and veins, increasing the 
probability of nanoparticle interaction and uptake by Kupffer cells14. 
This can make the RES system a suitable target for intravenously 
administered nanomedicines15, as they will largely accumulate there. 
However, avoidance of the RES is essential for improving the deliv-
ery efficiency of intravenously administered nanoparticles to targets 
outside of the RES16,17. Other organs will also remove nanoparticles 
depending on their physical and chemical properties such as their size. 
For example, nanoparticles smaller than 6 nm can be renally excreted 
by the kidneys18 and intradermally administered nanoparticles can be 
sequestered by dendritic cells19. These are only a few examples of the 
different cells and tissues that remove nanoparticles from circulation 
and prevent them from reaching the biological target site.

Nanoparticles that reach the target organ must exit the vascula-
ture to reach target cells within the tissue. Nanoparticle transport 
through the blood vessel is dependent on the vessel physiology. 
For example, the vessels of the liver sinusoid are fenestrated, so 
nanoparticles smaller than the fenestrae (approximately <100 nm) 
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can diffuse through to access the space of Disse20. The vessels in the 
glomeruli of the kidney also have fenestrae. The effective cut-off 
size is smaller (<6 nm)18,21,22 due to the structure and composition of 
the underlying glomerular basement membrane23–25. Nanoparticle 
size21,22, surface charge26,27 and shape28,29 can all affect nanoparticle 
clearance by the kidneys. The vessels in the brain are tightly regu-
lated by a blood–brain barrier that prevents delivery of nanopar-
ticles carrying drugs or imaging agents into the brain30. The vessels 
of solid tumours use a combination of both active and passive 
transport mechanisms to transport nanoparticles31. Vessel physiol-
ogy varies across different endothelial linings. The physicochemical 
properties of the nanoparticle (such as size20, charge27 and surface 
chemistry32) should be designed to extravasate through blood ves-
sels at the target tissue.

Nanoparticles inside the target tissue must travel through the  
tissue stroma to reach the target cells. The tissue stroma has  

extracellular matrix (ECM) and connective tissue cells, such as 
fibroblasts, pericytes and tissue-specific support cells. Extracellular 
matrix proteins can trap nanoparticles before they reach their 
intended target. The composition of the ECM varies between tissues 
and can be drastically altered in diseases such as liver fibrosis and 
cancer33–35. Some ECM components such as collagen, fibrinogen 
and hyaluronic acid can sterically hinder nanoparticle diffusion36,37. 
Off-target cells present within the stroma can sequester nanopar-
ticles before they reach their intended target cell type. For example, 
tumour-associated macrophages can sequester nanoparticles that 
reach the tumour, preventing them from delivering their cargo to 
cancer cells38–43. Nanoparticles must navigate through the tissue 
stroma and avoid sequestration or degradation in the ECM or by 
off-target cells to reach their target.

Nanoparticles may need to enter the target cell for its cargo to  
elicit a therapeutic effect. Cellular uptake can occur through various  
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Fig. 1 | Biological levels of nanoparticle barriers. The number of delivery barriers increases with a deeper delivery target. Organs are typically the easiest 
to deliver nanomaterials to, while subcellular structures are the most difficult because the nanoparticles have more barriers to travel through to get to the 
final destination. RES, reticuloendothelial system; LSEC, liver sinusoidal endothelial cell; ECM, extracellular matrix.
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mechanisms such as membrane fusion44, caveolin-mediated endo-
cytosis45, clathrin-mediated endocytosis46, macropinocytosis47 or 
phagocytosis48. The target cell phenotype and nanomaterial chemi-
cal composition determine how nanoparticles are taken up and pro-
cessed. The surface receptor identities, expression levels and recycling 
kinetics affect the uptake rate and pathways accessible to the nanopar-
ticles. This affects the optimal uptake route for a given cell type49,50. 
Santos et al. found that 132N1 cells mainly used clathrin-mediated 
endocytosis while A549 cells mainly used the caveolin pathway50. 
The physicochemical characteristics of the nanomaterial such as size, 
shape and surface chemistry also influence the uptake route. Meng 
et al. demonstrated that HeLa and A549 cancer cells took up ~40 fold 
more silica nanoparticles via macropinocytosis when the aspect ratio 
was 2.1–2.5 in comparison to other aspect ratios47. These examples 
show that there are a variety of cell type specific mechanisms that 
dictate nanoparticle–cell interactions and uptake.

Nanoparticles inside the cell may need to escape the endosome 
to reach the final subcellular target location, such as the cytoplasm. 
Strategies include the use of positively charged lipids to disrupt endo-
some bilayer stability51 or pH sensitive polymers to modulate proton 
transport in endosomes52,53. In one application of this strategy, Hu et al. 
developed a pH-responsive polymer nanoparticle for cytosolic drug 
delivery. This nanoparticle responded to acidic lysosomes by increas-
ing in diameter from 200 to 500 nm when the pH dropped from 7.4 
to 4.9 to disrupt the membranes of acidic lysosomes54. This translated 
to a ~16-fold increase in cytosolic localization of the delivered cargo 
in dendritic cells in vitro compared to a non-pH-responsive design54. 
Some drugs may need to access organelles within the cell. Pan et al. 
demonstrated improved nuclear delivery of silica nanoparticles to 
HeLa cancer cells by conjugating the HIV-TAT nuclear localiza-
tion peptide to the nanoparticle surface55. This nuclear localization 
sequence binds the α and β importin receptors (karyopherin) for 
active transport into the nucleus56. Methods allowing endosomal 
escape and using specific organelle localization tags should be con-
sidered for nanoparticles targeting subcellular locations.

Each level of nano–bio interactions has barriers that prevent 
nanoparticles from being delivered to the target site. Nanoparticles 
can be sequestered or degraded at every barrier, reducing the 
number of nanoparticles on the delivery journey to the target. 
Understanding interactions between nanoparticles and the biology 
at each level will help to design efficient nanocarriers optimized for 
the biology of the delivery pathway.

Barriers remove nanoparticles from the journey
Delivery efficiency can be defined as the percentage of administered 
nanoparticles delivered to the intended biological target. It depends 
on the number of biological barriers and how the nanoparticles 
interact with them (Fig. 2a,c). Using tumour targeting as an exam-
ple, the amount of nanoparticles decreases as they move through the 
barriers (Fig. 2b). Conceptually, this is exemplified by the reduction 
in accumulation as they transport from the whole tumour to the 
cancer cell nucleus. Dai et al. showed that 0.7% of gold nanoparticles 
are delivered to the solid tumour, but only 0.0014% are delivered to 
the tumour cells in mouse models38. This is due to the biological 
barriers (for example, extracellular matrix and tumour associated 
macrophages) that a nanoparticle has to overcome to go from the 
tumour vessel to the final target cell.

The number of barriers can affect delivery efficiency. One 
approach to reduce the number of barriers is to change the admin-
istration route to directly bypass certain barriers. Many nano-
medicines use intravenous delivery, which is suitable for targeting 
haematological, vascular or systemically disseminated diseases 
since there is direct access to these sites via the blood circulation. 
Oral administration allows access to the gastrointestinal tract, 
intraocular administration to the eye, inhalation to the lungs and 
intradermal to the skin and lymphatic system. Garbuzenko et al. 

showed that inhalation improved both the delivery to the lungs and 
the therapeutic efficacy compared to intravenous administration57. 
Intravenously administered nanoparticles must pass the barriers of 
the RES system (liver and spleen), and face degradation in circula-
tion before reaching the lung. The inhaled nanoparticles have more 
direct access to the lungs and face fewer delivery barriers.

Another approach is to change the biological target. If the disease 
of interest has multiple druggable targets, the most direct delivery 
pathway may be selected in favour of higher delivery efficiency. 
In the example of treating a solid tumour in Fig. 2c, targeting the 
tumour endothelium has fewer barriers to overcome compared to 
targeting the nuclei of tumour cells. This concept is used by clinically 
approved nanomedicines. They target pathologies located in tissues 
where nanoparticles preferentially accumulate such as the skin58 and 
the RES system59. Examples include: Doxil (liposomal doxorubicin) 
for the treatment of AIDS-related Kaposi’s sarcoma skin tumours60, 
and Feraheme (carbohydrate-coated iron oxide nanoparticle) for 
iron deficiency anaemia treatment in the liver and spleen61.

Identifying the ideal nanoparticle design
Identifying the optimal nanoparticle physicochemical properties 
for delivery to a specific target is challenging. What is the best size, 
shape or surface chemistry for targeting disease x, y, or z? The ideal 
nanoparticle design is one that avoids off-target interactions and 
favours on-target interactions.

Collecting nano–bio interaction data. There have been a significant 
number of studies that aim to elucidate the relationship between the 
physicochemical properties of engineered nanomaterials and their 
interaction with biological systems in vitro and in vivo. However, 
it is a complex set of interactions that are unlikely to be defined by 
a single parameter. (1) Data from in vitro studies can be used to 
understand cellular or subcellular level nano–bio interactions. This 
is exemplified by in vitro studies investigating nanoparticle uptake 
by cells where essentially every property of the nanoparticle has an 
impact on cell uptake including size62,63, shape64–66, ligand density67,68, 
material composition69 and surface chemistry70,71. Bai et al. showed 
that palladium and gold nanoparticles were taken up more than 
platinum nanoparticles69. Wang et al. showed the ligand valency 
of the nanoparticle surface impacts their cellular interactions with 
SK-BR-3 and MCF-7 breast cancer cell lines72. (2) Data from in vivo 
studies are critical to delineate the role of multiple organs or systems 
in the delivery process. Nanoparticle libraries can be created and 
administered into animals to understand how different nanoparticle 
properties affect certain biological outcomes. Nanoparticle elimi-
nation from the body is one example where nanoparticle libraries 
have been used. Choi et al. established the 6 nm cut-off size for renal 
elimination using a library of different sized quantum dots18. Poon 
et al. used a library of gold nanoparticles larger than 6 nm to show 
that nanoparticles in this size range are eliminated through the hepa-
tobiliary pathway in the faeces or retained in the liver long-term20. 
Collection of nano–bio interaction data at both the in vitro and 
in vivo level is required to determine the optimal design.

Nanoparticle interactions at the disease site are also important to 
understand. The physiology of the tissue at the disease site will be 
different than in the healthy tissue and can affect the nanoparticle 
delivery to the target cells. This has been studied in solid tumours 
where nanoparticle penetration and distribution is affected by col-
lagen density36, blood vessel density73,74, blood vessel perfusion75 
and immune cell composition39,42. Sykes et al. measured the colla-
gen content of solid tumours and then modelled nanoparticle dif-
fusion through collagen gels at different collagen densities36. They 
found that larger nanoparticles (>60 nm) had reduced diffusion 
through higher collagen densities (>4 mg ml–1) compared to smaller  
sizes and lower collagen densities. Ekdawi et al. measured vascular 
properties of solid tumours from mice injected intravenously with 
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Fig. 2 | A systematic view of nanoparticle delivery barriers. a, Schematic proposing a barrier framework of the nanoparticle delivery process. The 
administered dose of nanoparticles is removed by successive barriers in the body until only a small percentage is delivered to the intended target; b, An 
example of using the barrier framework to model nanoparticle drug delivery to the nucleus of a solid tumour. After the nanoparticles are administered 
intravenously, they have to transport through the bloodstream to get to the final target site. Many of these nanoparticles are taken up by the liver, spleen 
and other reticuloendothelial organs. Once they enter the solid tumour, they have to cross the blood vessel, extracellular matrix and other non-tumour 
cells before they reach the tumour cells. Then they would have to cross the cell membrane, vesicles and other subcellular structures before reaching the 
target in the nucleus. To illustrate how challenging this is, we show that one out of one million nanoparticles may reach the nucleus with the successive 
loss of nanoparticles along the delivery pathway. c, A detailed description of the different barriers a nanoparticle has to overcome to reach different 
therapeutic target locations for cancer therapy. MMP, matrix metalloproteinase.

Nature Nanotechnology | VOL 15 | October 2020 | 819–829 | www.nature.com/naturenanotechnology822

http://www.nature.com/naturenanotechnology


Review ArticleNATuRe NAnoTechnology

fluorescent liposomes73. They found that the liposomes accumulated 
in areas of the tumour with high vascular density, such as the periph-
ery of the tumour. Stirland et al. investigated the role of vascular 
perfusion on local nanoparticle accumulation within tumours by 
injecting two uniquely fluorescent nanoparticles either sequentially 
or together and analysing histology sections of the tumour75. They 
found that co-injected nanoparticles co-localized in the same parts 
of the tumour. When the two formulations were injected at different 
times, they accumulated in different areas of the tumour because the 
local blood vessel perfusion was dynamic. Cuccarese et al. investi-
gated the impact of immune cell populations on nanoparticle accu-
mulation by injecting lung tumour-bearing mice with fluorescent 
nanoparticles and then imaging the whole lungs for macrophage and 
nanoparticle distribution42. They found that the amount of nanopar-
ticles in a tumour correlated with the number of macrophages in 
that tumour. Furthermore, identifying the ideal nanoparticle formu-
lation is complicated by pathophysiological changes in disease states. 
The presence of disease can alter the in vivo nano–bio interactions 
and change the nanoparticle’s blood clearance properties. Kai et al. 
determined that nanoparticle clearance from the blood is faster in 
tumour-bearing mice than healthy mice76. Similarly, Wu et al. 
showed in human patients that liposomal drugs eliminated 1.5-fold 
more quickly in patients with liver tumours compared to patients 
without liver tumours77. Collecting data on nano–bio interactions 
is the key step in determining the optimal design. The abundance 
of data will likely require computational analysis to identify how the 
complex relationships between the nanomaterial and biology allow 
for the identification of the optimal design.

Computational techniques to process nano–bio interaction data. 
Identifying the best nanoparticle design can be aided by experi-
mentally examining how molecules, cells and tissues interact with 
nanoparticles of different designs. Many of the examples in the pre-
ceding sections were focused on understanding how a single param-
eter contributes to a single biological outcome. However, within 
the body there are many confounding and complex interactions 
between the nanomaterial and molecules, cells, and tissues that are 
not well understood. As the number of nanoparticle designs being 
tested increases and the amount of biological data collected about 
the nano–bio interactions increases, establishing complex relation-
ships between these variables becomes possible. Computational 
techniques may be used to define the relationship between the nano-
material properties and their biological interactions. Figure 3 shows 
a general, high-level overview of this framework. This is an emerging 
area of research and the aim of this section is to highlight examples of 
computational approaches for understanding nano–bio interactions.

Linear regression models. Linear regression models can be used to 
estimate the relationship between a dependent variable and one or 
more independent variables. The advantage of this method is that it 
is simple to implement and evaluate. The main disadvantage is that 
it does not accurately model non-linear relationships. Walkey et al. 
developed a partial least-squares regression model to predict cell 
association based on the protein corona of a panel of nanoparticle 
formulations1. A library of 105 different nanoparticle formulations 
(different sizes, materials and surface chemistries) were incubated 
with serum, and the protein corona was measured using liquid 
chromatography tandem mass spectrometry (LC-MS/MS). This 
data was used to generate a multivariable model that could pre-
dict cell association with 84% higher accuracy than single variable  
models using a single protein. This technique is typically used to 
establish the interaction of nanoparticles with simple biological  
systems such as cells in vitro.

Decision matrices. A decision matrix is a flow chart or table that 
can be used to identify key nanomaterial design parameters. Sykes 

et al. created a decision matrix to identify the optimal nanoparticle 
size for tumour accumulation for imaging (best contrast) or treat-
ment (high retention and even distribution) applications based on 
tumour accumulation, fluorescence intensity, uptake rates, pen-
etration capacity and theoretical loading capacity data that were 
ranked in importance for therapeutic and diagnostic applications. 
Each nanoparticle size was scored for its usefulness in imaging or 
treating tumours of different sizes36. Poon et al. created a decision 
flowchart to identify nanoparticle elimination pathways based on 
size and chemical composition20. This can be used to decide which 
nanoparticle design to use to access different elimination pathways. 
The advantage of decision matrices is that they are simple to imple-
ment and understand. The disadvantage is that they guide decisions 
for only a few simple design parameters.

Machine learning. To develop predictive models with limited 
knowledge of the relationships between the large number of vari-
ables, researchers have begun exploring machine learning methods 
(such as support vector machines, neural networks and random 
forests). Machine learning models are statistics-based computer 
algorithms that learn to perform a task without explicit instruc-
tions. When the relationship between a set of input variables (for 
example, nanoparticle characteristics) and a set of output variables 
(for example, tumour delivery) are unknown, machine learning can 
optimize a set of mathematical rules (that is, a model) to predict this 
relationship. Machine learning has been explored for applications 
such as to predict cell binding or accumulation in animals from the 
protein corona on nanoparticles78–80, predict delivery to metastatic 
tumours74, predict nanoparticle toxicity81,82 and analyse chemical 
reagents for tuning nanoparticle physicochemical properties83,84. 
This usually requires hundreds to thousands of examples of accu-
rately annotated data to train and validate the algorithm.

Support vector machines. Support vector machines are a method 
of supervised learning that can be used for classification or regres-
sion. Support vector machines are useful in situations with limited 
datasets (a few hundred data points) and when the prediction needs 
to tolerate noise in the dataset. Support vector machine models have 
been created to predict nanoparticle delivery to metastatic tumours 
based on tumour three-dimensional (3D) morphology74 and to pre-
dict cell binding to different nanoparticle formulations from their 
protein coronas79. Kingston et al. built a model to predict nanopar-
ticle delivery to metastatic tumours by training a support vector 
machine model from imaging data. Light sheet microscopy was 
used to measure tumour morphology (that is, volume, surface area, 
sphericity, number of cells, cellular density, cell distance to blood 
vessels) and nanoparticle delivery (that is, number of nanoparticle 
positive cells, mean nanoparticle intensity) of over 1,300 individual 
metastatic tumours. The support vector machine model was trained 
to predict the number of nanoparticle positive cells (output) from 
the morphological data about the tumour (inputs). The model was 
able to predict the number of nanoparticle positive cells with a 
Pearson correlation (r) of 0.94 and root mean squared error (RMSE) 
of 27 cells. This proof-of-concept study demonstrates how disease 
physiology can be used to predict nanoparticle delivery.

Neural networks. Neural networks work by relating input data 
to output results using linear and non-linear transformations.  
The relationships are strengthened by large datasets iterating 
through multiple hidden layers of transformations. Each iteration 
adjusts the transformations, which improves prediction accuracy. 
The ability to adjust the number, connectivity and data transforma-
tions throughout the layers of the network makes these methods 
capable of modelling complex relationships between the dependent 
and independent variable(s). Lazarovits et al. used neural networks 
to generate a computational model to predict organ accumulation  
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and blood half-life using protein corona compositions from a panel 
of nanoparticle formulations78. Different gold nanoparticle sizes 
were injected into rats. Their protein coronas at different time 
points were used as input data. The output data was the amount of 
gold in the liver, spleen and blood. The neural network was trained 
to predict the amount of gold nanoparticles in the liver, spleen and 
blood based on the protein corona composition. When validated 
using two gold nanoparticle formulations of unknown composition 
the model was able to predict the half-life, spleen accumulation and 
liver accumulation based on the protein corona composition with 
77–94% accuracy. This study demonstrated a proof-of-concept that 
the protein corona composition can enable prediction of nanopar-
ticle delivery in animals.

Random forests. Random forests are an ensemble machine learn-
ing method for creating classification or regression models. Ban 
et al. used a random forest algorithm to predict the protein corona 

of nanoparticles given their physicochemical properties (size, 
shape, material, surface chemistry, surface charge)80. Data from the 
literature was collected from 652 different nanoparticles covering 40 
different nanoparticle materials and over 50 types of surface modifi-
cations. Using 10-fold cross validation the random forest algorithm 
was able to predict the relative protein abundance of 178 different 
proteins with most R-squared values >0.7 and root mean squared 
errors below 5%. In the future, the prediction of the protein corona 
from the physicochemical properties of the nanomaterial could 
offer a way to screen nanoparticle interactions computationally.

Challenges of using computational approaches. A number of 
challenges exist for applying computational approaches to analyse 
nano–bio interactions. The first is the need for large datasets (hun-
dreds to thousands of data points) of high-quality data. Measuring 
cellular uptake, or organ delivery across many different types of 
nanoparticles, in many different cell types or animals is costly and 
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time-consuming. In some situations, the amount of data required 
to achieve statistically significant relationships may be prohibitively 
large. Secondly, an interdisciplinary team of experts with knowledge 
across different areas including computer science, materials science 
and biological science is needed to deploy these methods. Thirdly, 
the algorithms need to be robust and work across a large variety of 
nanoparticle formulations or biological applications. In the above 
examples the models are used to solve a single problem, such as liver 
accumulation or cell binding for a limited library of nanoparticle 
formulations. These computational methods can be aided by data 
from studies that identify new biomarkers, cellular receptors and 
new nanomaterial designs. In the future, we need robust algorithms 
to predict multiple outputs from a large array of nanoparticle for-
mulations and biological inputs.

Guiding the delivery strategy
The current sequence for engineering nano-delivery systems for 
in vivo applications is: (1) design and synthesize the nanoparticle, 
(2) characterize in cells in culture, (3) inject them into animals and 
measure delivery efficiency. The end therapeutic outcomes suggest 
whether the design was successful or not. This approach is based on 
a trial-and-error strategy. A reverse approach to the current strat-
egy should be considered to achieve targeted delivery. This reverse 
approach would involve: (a) analysing the biology of the target dis-
ease, (b) defining the amount of nanoparticles to be delivered to 
each organ, (c) inputting results into algorithms, and then repeat-
ing steps (1) to (3) in the current sequence. A map of the nano–
bio interactions can provide a blueprint for the optimum design 
of nanoparticles for the desired delivery efficiency. This method 
would also determine whether an adjuvant approach is required. 
An adjuvant’s function is to alter the biology either at the diseased 
site or along the delivery pathway in order to improve the delivery 
efficiency of the nanomaterial by reducing the number or strength 
of the delivery barriers. Figure 4 outlines a workflow for delivery 
optimization that utilizes patient-specific data and knowledge on 
nano–bio interactions to guide the design of the delivery strategy. 
Box 1 defines a set of equations to conceptualize and compare the 
impact of barriers on the delivery of nanoparticles and their drug 
cargo to the target site. These tools describe a forward-thinking, 
patient-specific approach to designing the optimal nanoparticle and 
delivery strategy for reaching a specific disease target.

Biology determines the nanoparticle design. The biology of the 
diseased target site and the barriers the nanoparticles encounter 
along the delivery pathway determine the nanoparticle delivery 
efficiency. A workflow for the future design of nanoparticle deliv-
ery vehicles starts with using imaging and biochemical methods to 
assess the diseased target and the delivery barriers prior to engi-
neering the nanosystem. The physiology of the disease will vary 
between patients and disease stages.

The first step is to analyse the disease target. Computed tomog-
raphy (CT), magnetic resonance imaging (MRI) and positron emis-
sion tomography (PET) together with contrast agents can assess 
organ-level barriers, such as perfusion, for nanoparticle extrava-
sation and retention and predict nanoparticle target organ deliv-
ery41,43,85,86. Tissue biopsies and 3D imaging can identify sub-organ 
level barriers, such as changes in immune cell populations, their 
spatial distribution within the tissue microarchitecture and the vas-
cularization status of the target42,74,87,88. For tumour targeting, this 
would include imaging and analysis of vascular architecture, vessel 
permeability, extracellular matrix porosity, biomarker expression, 
cell distribution and cytokine profiles. These imaging and molecu-
lar tests will inform the design of nanoparticles through the compu-
tational algorithms.

The second step is to use computational algorithms to calculate a 
nanoparticle design with optimal size, shape and surface chemistry.  

Histopathology
 from biopsies

Step 1: Characterize biology

Step 2: Use computer algorithm

Step 5: Administer treatment(s)

Step 6: Monitor efficacy

Clinical imaging
(for example, CT, MRI, PET)

Step 3: 
Select and synthesize

nanoparticles

Step 4: 
Select adjuvants

Kupffer cell
depletion

Extracellular
matrix degradation

Blood vessel
normalizationS

O

OH
n

Fig. 4 | A rational strategy for designing and testing nanoformulations  
for delivery. The biology of the final target and the organs/cells that  
a nanoparticle interacts with will determine their delivery efficiency.  
We propose a new workflow for personalizing the design of the 
nanoparticles for a specific clinical application. This is a six-step  
process. (1) Analyse the pathophysiology of the diseased target.  
(2) Input the information and delivery goals into a computer algorithm. 
(3) An algorithm generates design specifications for the nanoparticle. 
Synthesize and characterize these nanoparticles. (4) Determine if an 
adjuvant is needed to increase delivery. (5) Inject into the patients  
either the nanoparticle alone, or with an adjuvant before, during or  
after injection of nanoparticles. (6) Monitor the clinical performance  
of the nanoparticle with or without adjuvant. During the treatment  
regimen, step 1 is repeated to measure changes in the disease, and 
off-target effects. Each round of treatment may require a different 
nanoparticle design as the pathophysiology and biological response  
may change. Kupffer cell image adapted with permission from ref. 20, 
American Chemical Society.
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This design would be the most effective at overcoming the 
patient-specific barriers, determined in step 1 to achieve the desired 
delivery outcome. Changing the nanoparticle design can change both 
on-target and off-target accumulation (Box 1). The next steps are 
to synthesize this nanoparticle design, administer the nanoparticle 
therapy to the patient and to monitor the efficacy and changes in the 
pathophysiology of the target site to determine the next nanoparticle 
design iteration. This process shares similar philosophies to personal-
ized medicine where the treatment is tailored to the patients’ specific 
disease pathophysiology. Miller et al. showed that magnetic resonance 
imaging with an iron oxide nanoparticle (Feraheme)-based contrast 
agent could be used in tumour bearing mice to predict the delivery 
and therapeutic response of a subsequently administered therapeutic 
nanoparticle41. Ultimately, the biology informs the optimal design of 
nanoparticles to achieve maximum delivery.

Priming the biology for delivery. Even the optimal nanomaterial 
design may not ensure enough nanoparticles are delivered to the 
target site. One may need to add adjuvant strategies to improve the 
delivery efficiency. These strategies inhibit or block specific organs 
or cells from taking up nanoparticles en route to the target site, which 
would reduce the off-target accumulation (Box 1). This allows more 
nanoparticles to reach the final target site. Designing these strategies 
requires a thorough understanding of how specific biological bar-
riers influence nanoparticle transport in a given delivery pathway. 
Below are three current examples from cancer nanomedicine:

The first method is to disable the RES from taking up intrave-
nously administered nanoparticles. This can be done by depleting 
or inhibiting Kupffer cells in the liver that sequester nanoparticles. 
Tavares et al. showed that depletion of liver macrophages improved 
tumour accumulation by up to 150 times depending on the nanopar-
ticle type and cancer model89. Other strategies used decoy nanopar-
ticles to block RES uptake of subsequent nanoparticle injections 
and increased their circulation half-life90–92. Ouyang et al. recently 
showed that the administered dose of any nanoparticle design must 
exceed a general dose threshold to overwhelm the RES uptake rates 
and maximize delivery to tumours up to 12% of the injected dose93. 
In mice, this threshold was 1 trillion nanoparticles and this high-
lights the influence of dose on nanoparticle delivery strategies. By 
reducing uptake in RES organs, nanoparticles are able to circulate 
longer and increase their potential to accumulate at the target site.

A second method is to improve transport of nanoparticles out 
of blood vessels. Administering a vascular normalization agent 
(such as anti-VEGF or anti-VEGFR-2) can improve tumour blood 
vessel perfusion. This decreases tumour interstitial fluid pres-
sure and increases blood supply94–96. Chauhan et al. showed that 
pre-administration of anti-VEGF-receptor-2 antibody DC101 
improved the transvascular flux of 12 nm quantum dots by 2.7 to 
3.1 times in mice with orthotopic mammary tumours94. Other strat-
egies include using radiation therapy to make tumour blood vessels 
more permeable before administering nanoparticles97,98.

A third method is to improve the diffusion of nanoparticles through 
extracellular matrix (ECM) to penetrate deeper into target tissues. 
Collagen and hyaluronic acid are major components of the extracel-
lular matrix and are overexpressed in pathologies such as fibrosis and 
cancer37,99. Enzymes such as collagenase100 or hyaluronidase101 can 
be used to degrade these extracellular matrix proteins. Sparse ECM 
can also increase vessel permeability by opening blood vessels102. 
Murty et al. showed that attaching collagenase to their 30 nm gold 
nanoparticles improved tumour delivery by 1.4 times103. Eikenes et al. 
pre-treated human osteosarcoma tumour-bearing BALB/c nude mice 
intratumourally and intravenously with hyaluronidase to increase 
tumour uptake of liposomal doxorubicin by 2–8 times104.

Continuous analysis of disease biology. A treatment regimen 
may require different nanoparticle designs over time. For example, 

round 1 of therapeutic treatment of patients with stage 4 breast can-
cer may require a nanoparticle that is spherical and 50 nm. After 
initial treatment leading to some tumour shrinkage, the optimal 
nanoparticle design for the next injection may be 15 nm. It is pos-
sible that as tumour volume and ECM density changes, altering 
the nanoparticle design may be necessary36,105. Changes in the dis-
eased tissue may also cause other systemic changes to metabolism 
and elimination, which could alter the ideal nanoparticle design 

Box 1 | Equations comparing the delivery efficiency of 
nanoparticles, drugs and drugs carried by nanoparticles

We describe nanocarriers containing releasable small molecule 
therapeutics as a model system. We present simple mathematical 
equations to describe the delivery efficiency of the nanoparticles 
alone, small molecule drugs alone, and the drug and nanopar-
ticle together, being transported to the target site. The delivery 
efficiencies of both the nanoparticles and small molecule drugs 
are directly related to the amount that accumulates in the tar-
get or inversely related to the summation of their losses due to 
the barriers that sequester or eliminate them. The therapeutic  
effectiveness of a nanoparticle carrying a drug is dependent upon 
the total drug delivered by the nanoparticle. This depends on the 
amount of nanoparticles delivered to the biological target, the 
amount of drug remaining in the nanoparticles that are delivered 
and the amount of drug released at the target. #NPtotal refers to 
the total number of nanoparticles administered. #NPon-target refers 
to the number of nanoparticles that are taken up at the intended 
destination. #NPoff-target refers to the number of nanoparticles that 
are taken up by off-target sites. #NPliver refers to the number of 
nanoparticles that are taken up by the liver. #NPspleen refers to  
the number of nanoparticles that are taken up by the spleen. 
Drugremaining/NP refers to the amount of drugs still bound per  
nanocarrier. Release refers to the proportion of drugs that can 
be released by the nanoparticles. Of note, these equations can be 
written in different forms.

From the nanoparticle perspective:

Delivery efficiencyNP ¼ #NPon-target
#NPtotal

#NPtotal ¼ #NPon-target þ#NPoff-target

#NPoff-target ¼
Xn

i¼1

#NPoff-target;i ¼ #NPliver þ#NPspleen þ   

From the drug perspective:

Delivery efficiencydrug ¼
Drugon-target
Drugtotal

Drugtotal ¼ Drugon-target þ Drugoff-target

Drugoff-target ¼
Xn

i¼1

Drugoff-target;i ¼ Drugliver þ Drugspleen þ   

Drugon-target ¼ #NPon-target ´
Drugremaining

NP

Drugreleased ¼ Drugon-target ´Release

Effective DoseDrug ¼ Delivery efficiencyNP
´#NPtotal ´

Drugremaining

NP ´Release
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and delivery strategy106. Dose can also be modified in response to 
toxicity in off-target sites during monitoring93,107. Information from 
every iteration further improves the prediction accuracy and sug-
gests more efficacious and tolerable regimens108.

Perspective and outlook. We provide our view of where we believe 
the field of delivery is headed. We have witnessed the develop-
ment of methods to synthesize and characterize nanoparticles, 
and demonstrate their utility in targeting, imaging and treating 
disease. This has created a foundation with competencies that will 
advance this important field of research. However, the approach 
is a trial-and-error process to discover one optimal particle 
design at a time. There are now several groups that are designing 
high-throughput libraries of nanoparticles for delivery and screen-
ing against diseased targets in vitro and in vivo to identify an opti-
mal formulation109–113. While this is an excellent approach, we would 
need to assess the relevance of the screening results between species 
(for example, mice versus humans).

The broader concept behind our proposed strategy will lead to 
a more rational approach for engineering nanoparticles as deliv-
ery vehicles of medical agents. The approach is based on the prin-
ciple of identifying relationships between nanoparticle design and 
in vivo transport at the organ level, sub-organ level or subcellular 
level, and then organizing these relationships into a system that can 
be analysed by computational algorithms to guide the design of the 
delivery vehicle and the delivery strategy. The implementation of 
artificial intelligence approaches in the clinic is an emerging area of 
research supported by new policies put forth by regulatory agencies 
such as the US Food and Drug Administration (FDA)114. In particu-
lar, there has been success in the clinic with the first FDA-approved, 
adaptive, personalized approach for radiation therapy in oncology 
powered by artificial intelligence115. Patient-specific radiation dose 
and positioning were optimized based on multimodal tumour imag-
ing throughout the treatment regimen. We envision this futuristic  
approach could be applicable for nanomaterial-based chemo-, 
radio- and immuno-therapies once sufficient high-quality datasets 
of nano–bio interactions are available.

These developments will evolve the field of delivery to look at 
the delivery problem not only from the engineering and chemistry 
perspective, but also from a biological perspective. It is important to 
change our viewpoint on delivery as the biological systems ultimately 
determine whether the nanoparticles are able to access the final tar-
get site. Table 1 outlines a series of critical questions to consider when 
trying to optimize delivery to a specific target. These questions are 
designed so that the nano–bio interactions along the entire delivery 

pathway are considered when designing a strategy to reach a target 
disease site. Importantly, these design considerations apply to all 
nanoparticle-based delivery systems, including delivering drugs for 
therapy or imaging contrast agents for diagnostics, since achieving 
a high delivery efficiency and specificity for a target site is crucial to 
their clinical purpose116. In the future, we imagine being able to select 
a disease site and use algorithms to guide nanoparticle designs. For 
example, a researcher develops a drug and aims to deliver at least 10% 
of an injected dose to a tumour, with a maximum acceptable off-target 
delivery of 20% to the liver. The researcher inputs this desired deliv-
ery profile into a computer algorithm, which then calculates the ideal 
nanoparticle strategy. While we are currently far from implementing 
this strategy, we foresee this future for the rational design of delivery 
vehicles to bring emerging medical agents to a specific disease site.
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